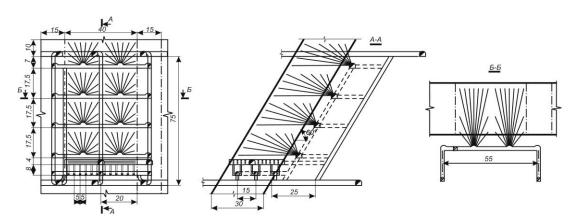
УДК 622.27

О.Е. ХОМЕНКО, А.Б. ВЛАДЫКО, кандидаты техн. наук, доценты, С.А. КОЗЛОВ студент


Национальный горный университет, Днепропетровск,

УСОВЕРШЕНСТВОВАНИЕ КАМЕРНЫХ СИСТЕМ РАЗРАБОТКИ ДЛЯ ШАХТ КРИВОРОЖСКОГО БАССЕЙНА

Определены недостатки варианта камерной системы разработки, который широко применяют на шахтах Криворожского бассейна. Представлены результаты пробных теоретических и лабораторных исследований устойчивости нарезных выработок вблизи очистных камер. Сделаны выводы и даны рекомендации по безремонтному поддержанию подэтажных буровых штреков.

На протяжении 126 лет Криворожский железорудный бассейн является крупнейшим производителем товарной железной руды в Европе. Шахты региона добывают более 70% руды с помощью камерных систем разработки. В свою очередь, до 50% запасов железных руд бассейна добывается этажно-камерными системами с отбойкой руды глубокими скважинами из подэтажных буровых штреков, пройденных по породе (рис. 1). На протяжении 30 лет эти системы практически не претерпели кардинальных технологических изменений, т.е. до 90% подготовительно-нарезных выработок проводится без учета влияния очистного пространства на траектории их заложения, формы и размеры поперечного сечения, применяемые виды крепей.

Эти системы являются благоприятными для обеспечения высокой производительности труда и характеризуются минимальными затратами на добычу 1 т руды. Однако в условиях повышенного горного давления при отработке глубоких горизонтов область их применения резко сокращается. Для сохранения очистных камер оставляют потолочины и междукамерные целики больших размеров, что приводит к снижению камерных запасов и увеличению потерь и разубоживания руды в целом по блоку. В результате этого на шахтах бассейна все большее распространение получают подэтажно-камерные системы, которые характеризуются более низкими технико-экономическими показателями [1].

Рис. 1 Этажно-камерная система разработки с отбойкой руды из подэтажных буровых штреков, пройденных по породе

Одним из направлений совершенствования камерных систем разработки, с увеличением глубины их применения, является выбор рациональных трасс заложения подэтажных выработок. В настоящее время проведение подэтажных буровых штреков осуществляется в породах лежачего бока на расстоянии 2...5 м от залежей. В процесе обрушения запасов подэтажей и принятия камерами проектных размеров происходит разрушение целиков между буровыми штреками и очистными камерами, в результате чего повышается разубоживание и вторичное увлажнение руды, увеличивается опасность травмирования рабочих и нарушается вентиляция в блоках.

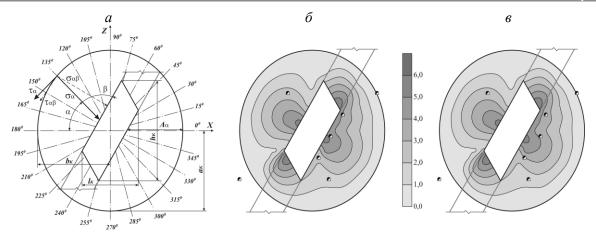
Вопросами разработки крутопадающих залежей камерными системами занимались в Криворожском техническом университете, Государственном предприятии «Научно-исследовательский горнорудный институт», Национальном горном университете такие известные исследователи как П.А. Абашин, С.Г. Борисенко, Ю.П. Капленко, В.М. Кучер, В.Ф. Лавриненко, Г.М. Малахов, И.Д. Ривкин, Г.Т. Фаустов, М.Б. Федько, В.В. Цариковский и многие дру-

гие. В большинстве случаев исследователи учитывали влияние очистного пространства на технологию горных работ. Однако, увеличение глубины разработки, ведущее к усложнению геотехнологических условий, влечет за собой повышение себестоимости добычи руды на глубоких горизонтах Криворожских шахт. Как следствие, сокращаются темпы подготовки и отработки выемочных едениц, снижается безопасность горных работ и качество добываемых руд. Это в немалой степени связано с отсуствием системного подхода в исследовании совместного влияния напряженно-деформированного состояния и фильтрационных процесов вокруг выработанного и очисного пространства, подготовительных и нарезных выработок в процесе подготовки и отработки очистных блоков [2].

Широко применяемые технологические схемы заложения нарезных выработок основываются на первичных экономических показателях, определяемых без учета изменяющихся геотехнологических, геомеханических, прочностных и гидрогеологических условий эксплуатации выработок на весь срок службы. Таким образом, одной из важных задач повышения эффективности добычи железных руд камерными системами разработки в условиях шахт Криворожского бассейна является выбор рациональных трасс заложения или способов крепления нарезных выработок. В результате этого целью выполняемой работы является усовершенствование технологических параметров проведения буровых подэтажных штреков с учетом напряженнодеформированного состояния массива и фильтрационных полей, обусловленных влиянием изменяющихся геотехнологических условий.

Для достижения поставленной цели сформулированы и решаются следующие задачи:

- 1. Установить закономерности геомеханических и фильтрационных процессов, происходящих в массиве пород, окружающих нарезные выработки с помощью теоретических, лабораторных и промышленных исследований.
- 2. Разработать методику расчета параметров проведения нарезных выработок, позволяющих обеспечить их безремонтную эксплуатацию на срок эксплуатации выемочных блоков.
- 3. Обосновать технологические параметры проведения нарезных выработок в области горных пород, попадающих под интенсивное влияние изменяющихся геотехнологических условий.
- 4. Установить эффективность внедрения технологических решений при добыче руд на шахтах Криворожского бассейна.


Для решения поставленных задач используется комплексный подход исследования, который включает анализ научных и проектно-технических источников по вопросам разработки крутопадающих залежей камерными системами разработки, а также аналитическое и физическое моделирование, натурная апробация. Пробные аналитические исследования выполнялись с помощью термодинамического метода, лабораторные — методом эквивалентных материалов. Результаты исследований планируется проверить опытно-промышленными экспериментами в условиях действующей шахты Кривбасса.

Теоретическим значением работы является установление зависимостей взаимосвязи между параметрами технологии подготовительных работ и напряженно-деформированным состоянием массива вблизи очистного пространства камер. Пробные аналитические исследования выполнены с помощью термодинамического метода [3] для условий горизонта 1200 м шахты им. Ленина ОАО «КЖРК» (рис. 2).

Основной объем теоретических исследований планируется выполнять с помощью метода конечных элементов с использованием современных пакетов прикладных программ типа Plasis. Величину напряжений в расчетных точках будущей трассы заложения подэтажных буровых штреков можно описать параметрической зависимостью МПа

$$\sigma = f(H, H_{\scriptscriptstyle{\theta}}, \gamma, w),$$

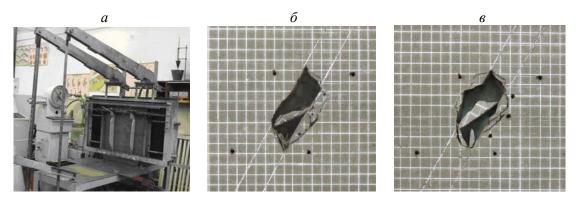

где H – глубина заложения очистной камеры; $H_{\rm e}$ – положение бурового штрека по высоте камеры; γ – объемная масса вмещающих пород; W – влажность горных пород.

Рис. 2. Расчетная схема теоретических исследований (a), напряженность массива при расположении подэтажных штреков по базовому варианту (δ) , по предлагаемому авторами варианту (s), МПа

Лабораторные исследования проводили на стенде физического моделирования, который установлен в лаборатории кафедры строительных геотехнологий и геомеханики Национального горного университета (рис. 3, a). Стенд состоит из камеры размером 500×500 мм, прикрытой стенкой из оргстекла толщиной 30 мм, крепежных винтов и системы рычажных домкратов. К верхней крышке крепили ребра жесткости, предохраняющие выпучивание оргстекла. Подбор состава эквивалентного материала проводился по основным физико-механическим параметрам с целью воспроизводства свойства мартитовых руд Криворожского бассейна. Моделирование проводилось на эквивалентном материале, свойства которого максимально приближаются к мартитовым рудам прочностью 80...100 МПа. Состав эквивалентного материала включал в себя кварцевый песок – 50%, молотый гранит – 15%, чугунную стружку – 10%, измельченную слюду – 5% и парафин – 20%. Внешний вид стенда и результаты физического моделирования представлены на рис. 3.

В результате проведения лабораторных экспериментов было получено подтверждение пробным теоретическим исследованиям, в которых обоснована необходимость удаления подэтажных буровых штреков от очистной камеры. Отнесение буровых штреков необходимо в большей степени по центру блока и в меньшей в его верхней и нижней частях, т. е. у вентиляционного и откаточного горизонтов. Предварительные аналитические и физические исследования показали, что заложение подэтажных буровых штреков по центру очистного блока рационально на расстоянии 8...12 м, а ближе к горизонтам откатки и вентиляции — 6...8 м.

Рис. 3. Общий вид стенда физического моделирования (a), пригруженная модель при расположении подэтажных штреков по базовому варианту (δ) , по предлагаемому авторами варианту (ϵ)

При невозможности изменения места заложения подэтажных буровых штреков существует и обратная задача — обоснование их анкерного крепления. В результате анализа прямой и обратной задач усовершенствования камерных систем было получено оптимальное решение, которое поглощает рациональные решения обеих задач. Это проведение подэтажных штреков на безопасном расстоянии от камеры (рис. 2, δ) с дальнейшей проходкой в направлении очистной камеры удлиненных буровых камер (рис. 1, вид 6-6), т. е. не изменяя общей длины выработок в

блоке, сохраняем от разрушения подэтажные штреки, снижаем засорение руды и не увеличиваем длины эксплуатационных скважин, а повышение безопасности горных работ и восстановление вентиляции в блоке это вполне решаемые задачи.

Таким образом, практическим значением работы явилось усовершенствование технологических параметров проведения подготовительных работ, которое позволяет учитывать влияние очистного пространства на место заложения или способ крепления подэтажных нарезных выработок. Ожидаемые результаты работы следующие:

- 1. Разработка методики по определению рациональных параметров проведения подготовительных работ для камерных систем разработки при добыче руды на шахтах Криворожского бассейна.
- 2. Внедрение технологии проведения подготовительных выработок на шахтах ОАО «Криворожский железорудный комбинат» и ОАО «ГОК «Сухая Балка», что позволило бы получить реальный экономический эффект.

Список литературы

- 1. **Капленко Ю.П. Колосов В.А.** Моделирование технологии очистной выемки, обеспечивающей повышение показателей извлечения руды. Кривой Рог: Минерал, 2001. 177 с.
- 2. **Хоменко О.Е.** Долгий А.В., Мальцев Д.В. Крепление подготовительных выработок вблизи выработанного пространства железорудной шахты// Науковий вісник НГА України. 2004. № 6. С. 3-7.
- 3. **Лавриненко В.Ф.**, **Лысак В.И.** Физические процессы в массиве пород при нарушении равновесия // Изв. ВУЗов. Горн. журн. -1993. -№ 1. C. 1-6.

Рукопись поступила в редакцию 01.03.07